
ON THE BIFURCATION OF THE EQUILIBRIUM STATE 

OF A THmE-DIMENSIONAL ISOTROPIC ELASTIC 

SOLID UNDER LARGE SUBCRITICAL DEFORMATIONS 

General questions and the derivation of three-dimensional linearized equations for arbi- 

trary subcritical deformations (linearized equilibrium equations in stresses) have been 

examined in a number of papers [l-11]. Particular forms of the elastic potential [3, Y, 

12-161 have been applied in the derivation of the linearized equations in displacements 
for arbitrary subcritical deformations and in the solution of problems for 3 three-dimen- 

sional elastic isotropic solid in the majority of papers. For some of these problems, gene- 

ral solutions have been constructed in the case of homogeneo~ subcritical states [3, 143. 
The linearized equations in displacements for an arbitrary form of the elastic potential 
have been obtained in [Xl,. and a number of problems have been considered in such an 

approach [8, 17, 181. 
Following [4], three.-dinlensional linearized equations in stresses are examined below, 

where components of the Green’s finite strain tensor are chosen as strain characteristics. 

Linearized equations in displacements are obtained for an arbitrary form of the elastic 
potential. In the particular case of homogeneous subcritical states, general solutions are 
constructed which have been expressed in terms of the solution of second order equations 
for a solid with arbitrary cross-sectional outline, Proceeding from the general solutions, 
characteristic equations are obtained for a number of problems for an arhitrary form of 

the elastic potential. Certain forms of the elastic potential utilized in the literature are 

presented. Numerical examples are considered. 

I, Formulatfon of ths problem and method of fnvettfgrtfon. 
The equi~brium equations for arbitrary strains in Lagrangean coordinates which coincide 
with the Cartesian coordinates before deformation are [4] 

[si,,* (bl,l,l -F u,, J],i r= 0 (i, m. = 1, 2, 3) (I.11 

We can write the boundary conditions as [4] 

Ni5i,l* (b,,,,, -i- %1, ,) = p?,,* (1.2) 

Here the Ni3re the normal directions to the body surface before the strain, P,* the 
components of the external force vector along the axes of the Cartesian coordinate sys- 

tem, which act at the same point of the body surface after deformation, but are referred 
to unit area before deformation. The other quantities can be represented as follows: 

z = 1/( !t .i_ 2E,,) (1 + 2&,,) - (2E,,)Z 

In (X.3) there is no summation over i, i, n, m ; i, n, 178 are an even commutation 

of 1, 2, 2; cii j* are generalized stresses [4], Gij are the physical components of the 
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stress tensor, Ej are the elongations, S*R / SK is the change in area of the areas deter- 

mined by the direction N, Eij are components of the finite strain tensor. 

According to r2, 19, 41, the generalized stresses oil* are. defined in terms of the elas- 

tic potential Q, as follows: 
5y L- + 

a d 

! iq -i-Y&-y II) 
“j, ) 

(1.4) 

Let us assume that the elastic potential is a twice continuously differentiable function 

of three independent algebraic invariants 

Q = iI, (I,, la, I,), 11 = Enn* I2 ‘= E,,,,%,, 13 = %Fjm’%:L (1 l 5) 

Hence we can write 

c..* = $11 (‘15 ‘22 ‘3) ‘ij i- Qr (‘1, Is> I$) Eij + $2 (117 12, 13) &in&,j tf 

$0 = awiu,, q$ 7: 2d<f>!a12, qz == 3d@iilf, (1.C) 
The first expression in (1.6) can be obtained from the relationships between two 

coaxial, symmetric tensors of the second rank PO]. 
Following [4], let us linearize the relationships ( 1.1)-(1.6). To do this we represent 

all the quantities as 
*’ ;i,, 22 31i~” -t Oi”,,, 1i.i’ ~ Uio f lli, Eij’ =: EijO f Eij (1.7) 

Pk’ = zj: -+ f &, *.., zc r= Pi+ P,*, 

The superscript ’ here denotes all quantities in the unperturbed state determined from 

the relationships (3.1)-(1.6). while the perturbations are unmarked. 
As a result of linearization we &Lain 

]5:>, (fin, -t U”*~. 7~) + 5?~~Um, ,~l, i = O (1.8) 

and the boundary conditions 

*I’i [3i,l* (a,,,, + LP,, ,) -;- ;I:Klh,,l, ,,I =-- Pm* 

The linearized relationships (1.6) become 

cij* z IkArij -+ BEij + Ci,,E,j + L’rljEin 

wherein the following notation has been introduced 

(1 .Y) 

(1.10) 

Substituting (1. IO) and (1.11) into (1.8) and (1.9). we obtain the equations of bound- 
ary conditions for the problem of bifurcation of the equilibrium state of a three-dimen- 
sional elastic isotropic solid under arbitrary subcritical strains for an arbitrary form of 
the elastic potential, hence it is necessary to take account of the representation of the 

quantities $i in the terms of the elastic potential (1.6). 
It must be noted that the generalized stresses bin** are defined on the body surface 

in terms of Pm*O as followS: ~~~~~~ (a,,,, +_ g_ TX> = p;: (1.12) 

Let us turn to an analysis of the homogeneous subcritical states. 
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2. General colution: for homogeneous nubcritical :tatea, Let us 

examine the case when the subcritical state is defined by the following displacements : 

llmO zz Oi?n(hi-l)si, EiS=hi- 1, hi = const (2.1) 
It follows from (1.6) and (2.1) that the subcritical state is triaxial 

a~~m3L,n = P,,*“, G, = 0, i #m 

To determine the quantities (3,, *O from (1.6) we obtain the expression 

_*- a@” 
~~,,,I = m I- (LL 

(2.2) 

(2.3) 

There is no summation over m in the relationships (2.2) and (2.3). 

According to (2.1),(1.3) and (1. S), we obtain values of the quantities of the subcriti- 
cal state, and according to (2.1) and (1. ll), values of the perturbations 

2Eij0 = bij (Ai2 - I), I,” = yz @,A, - is), I,” = l/d (h,Y -- 1) (JUT,” - 1) (2.4) 

1,” = I/* (&? - 1) (An2 - 1) (h,X - 1) 

2&ij = hill,i, j + hjUj, i, II = h,U,, nr I, = (~lr’ - ‘) h,“*’ n (~‘5) 

I, = 3/p (A;,* - 1)” ?+,, ,*, n=l, “, 3 

Taking account of (2.1) and (2.2), the Eqs. (1.8) and the boundary conditions (1.9) 
take the following form: 

]GLCm~ + $*%I, i1, i = 0 (2.6) 

il’i [&.)mhli, -11 o;u,, i] = P,” ~3.7) 
Taking account of (1.6),(1. lo), (1. ll), (2. l), (2.4) and (2.5). we ohtain 

“ii* = GfjUikhkUk, k + (1 - 6ij) Gij (hi%, j f Q+, i) (2.8) 

wherein we have introduced the notation 

It follows from (2. 8) and (2.9) that the matrix ]I bi k I] (hi k = ai A&~) is not sym- 

metric in the general case ; therefore, the relationships between the increments (pertur- 
bations) of the generalized stresses and the derivatives of the increments (perturbations) 

of the displacements do not agree with the corresponding Hooke’s law relationships for 
an orthotropic body under small deformations. 

Substituting (2. 8) into (2.6), we obtain the fundamental equations in displacements 

l,,,,,iZlj ~ 0 (j, ,n -= 1. z. :I) (2.10) 
where 

I,!,, ; _~ “,,,;?.j -~~;~~~ 

10 J 

(2.11) 
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We represent the solution of the system of equations (2.10) in one of three forms, or 
as their linear combination 

(j) 
ui = 

’ det Ii Lyg II @(j) 

a (Lji) 

(i, f = 1, 2, 3) (2.12) 

There is no summation over j in (2.12). 
The functions @c?) are determined from the equations 

del; /I L,, 11 @,'j' = 0 (2.13) 

Substituting (2.8) into the boundary conditions (2.7), we derive the boundary condi- 

tions in displacements, but do not present them. 
The quantity P", (Sm* i S,)" (not summed over m) can be considered as the inten- 

sity of the surface loading referred to unit area in the body before deformation. Let it 

be denoted by T,,“. We hence obtain 

T;,=a%&,, (not summed over m > (2.14) 

The relationships (2.3) and (2.14) are useful in solving particular problems. 
Let US investigate the case when the equalities 

a:; = G$#O, 6 # 0 (2.15) 

are satisfied, or what is identical 

h, = A, =f- 0, hs + 0 (2.16) 

We see from (2.9) that the equalities 

ffll f aa2, aI3 f as3, 2G,, = u,, - a12, a+. =F aji rJ - (2.17) 

are then satisfied. 

Taking (2.17) into account, we represent the solution of (2.13) as 

( 

(2.18) 
am=cD,-f-cD,,f@‘s x+&+5i2&) 3x12 

mi = 0 (not summed over i ) 

The quantities c”i are roots of a cubic equation, which we do not present because of 
its awkwardness. We obtain the following values of the roots as a result of solving the 

equation : 

Cl2 = 
CIS + ass*“hl-2 

5 
(a33 + 5-33*%3-2) fGl3 + 6.33*%1-2) ‘I> 

e,,.+- all*“hI-2 ’ 3.3 (all+ ol~*“hl-~) (Gxa + ~~ll+*h3”L) 

2c = 
a$3 -+ a33*%3-2 + GE? + Ci33*vw1-2 _ (~13 + GIS)~ 
GB + a11”h3~ an + 511*%-2 (a11 + ~II*“~I-~) (G13 + a1-t*~h3-~) 

(2.19) 

Let us proceed as follows to determine the displacements. Let us set 
@Cl) 

= @I, (I)@) = CD,, (p(s)= Q a-t% 1 u. = i#) - ,(is, + U(i3) z (2.20) 

into (2.12) and (2.18). and let us introduce functions yi,which are solutions of (2.18) 

and are connected with the functions sf>, by the relationships 

K = (aI2 f- G12) G3+ orr*“h3-2j h&s ( &t& 
1 2 ii 

L+&+ 
3x12 

(a13 + Gl3)2 

(a12 + Gie) (G13 + a11*%3-2) 
(2.21) 
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We hence obtain from the expressions (2.11). (2.12). (2.17)~(2.21) 

(2.22) 

% = hs 
hl all+all*"hl-~ P _+ 82 

~1s + Gis i - -t ax12 8x22 

The general solurions (2.22) for a curved cross-sectional outline become 

1: ,, = $ YEP, - -&-(Y5 + T,), I&, = - -..?- \I-' 
an 1 - &(Y, + w (2.23) 

hr ii2 
El3 = - 

ffll + m*“?.r-2 
V 

C13+5;g*"hl-2 

as a13 + Cl3 7---- dx3" ~ an-+ Grl*"hl-* 
-q \I?* _i- 

1_ 

( t 

G13 I_- s33*"h1-2 

j flu+ all*"hl-2 
- c3y 'Eh] 

Here u, is the displacement along the normal, and U, the displacement along the tan- 

gent. 
Let US write the boundary conditions on a cylindrical surface for a curved outline when 

the Ox,-axis coincides with the cylinder axis. After a number of manipulations we 
obtain from (2.7) 

Let us write the boundary conditions for X3 = Wrist. From (2.7) we obtain 

(2.26) 

It must be noted that the quantities Pn*, Ps** P,* in condition (2.66) do not agree 
with the analogous quantities in condition (2.24). 

Let US examine the case of plane strain in the x1x3 plane, when azi#f), and Oar*‘= 0, 
In this case, we have the following relationships for the perturbations : 

The displacements are determined as follows: 

(4.1 = 
I 
&3h3 & + (a33 + %3*%-") h&p2 i- 'F3) 

u3 = - h,(a13 + G,,) a2(?$&q'3) (2.28) 
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The functions Yi are solutions of the equations 

( -& + ““G) Y’i - 0 (i = 2,3) (not summed over i ) (2.29) 

The boundary conditions for xl = const have the form 

Gtl*hl = PI*, G1s*h, = Pa* (2.30) 

We apply the results expounded in this Section to the solution of a number of problems. 
For these problems we shall obtain characteristic equations for the general form of the 

elastic potential. 

The boundary conditions in displacements are written as is customary. 

In evaluating the quantities aij and ciij by means of (2.9) for plane strain it is neces- 

sary to introduce the simplifications inherent to plane strain. 

8, Chrrrcteri8tic equations. Let us examine the stability of a cylindrical 
shell of thickness 2h, length I and middle surface radius R for compression along the 
generator. In this case it is necessary to set G*’ 11 = 0 everywhere in (2.19). (2.23) and 
(2.25). and to consider 0:; negative. For the nonaxisymmetric buckling mode the sold- 
tions of (2.18) are selected as 

Ii’, = [ AEJ, (&r) + A$& (r&r)] sin 7x3 sin nf3, 7 = mn/l (3.1) 

Yi = [ kl:,,1, (r&r) + A&K, (r&r)1 co.5 7x3 COS ne (i = 23) 

When the solutions are selected in the form (3.1) on the shell endfaces, hinged support 
conditions are satisfied. In (3.1) and below, I,, and K,denote the Bessel functions of 

pure imaginary argument and the Macdonald function 1211. Substituting (3.1) and (2.23) 
into the boundary conditions (2.25) for p,* E PO* z Pa* = 0, as a result of the 

customary procedure, we obtain the characteristic equation in the form 

det uaii[i = 0 (i, j = i,2, . . ., C) (3.2) 

where we have introduced the notation 

a13 Un+i, I,, 52) = - s In+1 IL (x + +I + 

+p+kZ+ “b;,“:“,“]Llcd~+~)l 

qa = all (- Li, K), al4 = a13 (- JL+i, JL 521, aI6 = al3 (In+i, I,, C3) 

~1~ = aI3 (- IL+1 Ii’,, 63), a31 (14 = r $J_ El 1, \51 (X + &)I, a32 s 0131 (&I) 

as3 (I,,+I, I,, 52) = (62’ i- k&,2) In+irL (X 3- ~11 + “(y+tkl) 1, [52(x + e)l 

a53 (Insit I,, 52) =z - 2; In+1 152 (x + &)I -!- 2n;x(;;j:) 1, [‘&(X + E)\ 

as2 = asI (- K,+t, KJ. c:s4 = as3 (- K,+t, K,. L), a55 = as3 (Jn+i. 1,. 1;3) 

ass = m53 (- LI? K,, 53). x = mnR/l, R = mxhll 

k, = (43 - ~3s*“h,-“)la~~, k, = a13 (G13 + ~33*0k-2)la11G13, 

b, = G,, (~1s f G, )/au 



To determine the elements of the second, fourth, and sixth lines, it is necessary to 
reverse the sign before the E, in the first, third and fifth lines, respectiveiy. In the case 

of the axisymmetric buckling mode, we select the solutions of (8.18) in the form 

‘PI EZ 0, \yi = [ z4& I (r&r) + AZ0 K (~t;~r)lcos ~$3 (i == 2.3) (3.4) 

For i, j = 1, 2, 3, 4 the characteristic equation has the form (3.2). 
Let us represent values of the elements of the determinant as 

“br;z 
Et, (f*.f,;?) zzz - r II 1;s (x + F)j :- (j,z mi- &l I [;3 iz .A- F11 (3.5) 

612 SiE an ( - Kl,K,I;d, cx1.3 3 311 (li,l,Q3), ct1r 55 Xl1 ( - Kl. k“;R) 

231 (Zl,C?, : (523 -+ k152) fl [3 (x ‘- E)l, 332 G an1 ( - Kl,:2) 

US:3 II 531 (II,&). cYT34 5 %l ( - K1,ls) 

To determine the elements of the second and fourth lines, the sign in front of the E 
must be reversed in the elements of the first and third lines, respectively. 

Let us consider the formation of an axisymmetric neck of length I in the tension of 
a cylindrical sample of radius R. To this end, WC set A’;” = 0 in the solution (3.4), and 

substitute (3.4) into the boundary conditions (2.2.5) for P,* z PQ* E Pa3 = 0. As a result 

of the castornary procedure we obtain the characteristic equation in the form (3.2) for 
i, j = 1, 2. The elements of the determinant are the following: 

(3.6) 

%(L) == 5%(5”2 + W1(5,X), %2 = %1(L) 
If the Macdonald functions replace the Bessel funcrions in (3.6), and the sign before 

the K, is reversed, then we obtain the elements of the characteristic determinant for 
the problem of surface instabili~ of a cylindrical cavity under axisymmetric deforma- 

tions. The length of the neck is found by minimizing the roots of (3.2) and (3.6) for 
;, j = 1, 2. 

Let us examine the stability of a rod of length I of circular cross section with radius 
R under compression. Let us limit ourselves to the plane buckling mode for the hinge 

support case in the +~a plane. Let us select the solutions of the fundamental equations 

(2.18) as 
YI = AZ) II (7;~) sin Y.C+ sin 0, ‘P-i -.4,$i’ II (r&r) cos y.r:r CC):: 0 (i -3 2,31 (3.7) 

As a result of the customary procedure we obtain a characteristic equation in the form 
(3.2) for i, 1 ;I: 1, 2, 3. Values of the elements of the determinant are 

(r,i = (nil - 1112) x&12 (X(l), 312 (:z) = xa11 @S2)211” (x52) -i- flnCrl2 (xs;2) -I- 

+- @aI3 (nl, + GIJ-’ (CIS + ~ns*“h~-” - a11 5~‘) 11 (@z)> 113 = LIZ (&) 

1.21 = xpo (xj,) - (xj$ II” (?tSl), a22 (<2) = - k'36212 (@a) (X8) 

cl23 5 222 (53?, a31 = 11 (x51), a32(52) = xzj2(Q3 + Gl:J)-'(a13 - 

- 333 *O h1-2 + ~2”Ull) Zl’ (x52), 233 E 232 (;:I) 

It must be noted that the quantities &2 in all the expressions (3.3), (3.5). (3. S), (3.8) 
must be computed by means of(2.19) for IJE = 0, where crzi < 0 in (3.3), (3.5) and 

(3.8). and 0;; > 0 in f 3.6). 
Let US examine the stability of a rigidly clamped circular plate of thickness 2h and 

radius R under uniform compression in the ~~2~ plane. The solutions of the fundamental 
equations (2.18) are selected in the form 
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(3.9) 

It is necessary to note that the boundary conditions are hence satisfied in the integral 
sense. and a:; = 0. For the axisymmetric buckling mode the solution becomes 

Y1= 0 (i ==I 2,3) (3.10) 

Substituting (3. IO), (2,19), (2.23) into the boundary conditions (2.26) for P,* E P,* E 
*o 

zs Ps* = 0 and oaa = 0, after a number of manipulations we obtain a characteristic 

equation in the form (3.2) for i, j = 1, 2. We represent the elements of the determinant 

as 

c111(52) = -& 
I 

an+ 511*%1-2 G13 

a33 all + orl*ohl-2 - Lze) + Q&" 1 sh %+ (3.11) 
-- 

all + G13 

221 (b2) = 
L 

an+ Gll*"k-2 G13 

a13 + G13 i a11 + bll*"hl-" 
-522 j-1 ]chT+ 

a12 = %(53)7 a22 = ML) 

It was assumed that C2C3 # 0 in deriving the characteristic equation. 

Let us examine the stability of a hinge-supported rectangular plate of thickness 2h, 

length a and width b under uniform multilateral compression, i.e. for a;: = 0. We take 
the solution of (2.18) in the form 

Yl=A,(,1,)sh Lx3cosm ??- xlcosn ’ 
51 a 

‘Pi = _A,,Jk’ Ch $ 
n ?t 

x3sinm a xlsinn -x2, b i == 2,3 (3.1:‘) 

After a number of manipulations a characteristic determinant can be obtained whose 
elements have the form (3.11) if the xk/R therein are replaced by y. 

Within the scope of plane strain, let us examine the stability of a hinge-supported 

strip of thickness 2h. aud length 1 under compression along the OX,-axis in the zl.rg 
plane. We select tile solution of (2.29) in the form 

Yt+Y3=(Ach+ 
?I Jt 

&I+ B ch 1 53.~1) sin 1 x3 (3.93) 

Substituting (2.27), (2.28), (3.13) in the boundary conditions (2.30) for PI* E Pa* = 0, 

we obtain a characteristic equation (3.2) as a result of the customary procedure, for 

i, j = 1, 2. The determinant elements are 

(3.14) 

azl(62) = 5x2 + 
i 

a33 + 633*'h3* 

a13 
1 ch ac2. ale ES *21(53). a12 3 m(53) 
/ 

Let us consider the surface instability of the lower r1 < 0 half-plane within the scope 
of plane strain under compression along the 0x3-axis. The concept of surface instability 
was apparently first introduced in @2], where the surface instability of a half-plane for 
an incompressible material was investigated. We take the solution of (2.29) in the form 
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.7 
y2 + Y3 = (,4 exp +--&2x1 + B exp+ <axi) sin -i_z~ 

As a result of the customary procedure we obtain the characteristic equation in the 
form (3.2) for i, j =y 1, 2. The determinant elements are 

all (52) = 52 I 52 - 
a11 (/$I? + Cs33*v.3-3) - a13 (a13 + G13) 

UllCl3 
1, 2123 Wl(53) 
-1 

a21 (52) = 522 + 
x33 + 533*‘h.~-~ 

a13 a22 = a21 (C3) (3.16) 

Here 1 is determined by minimizing the roots of the characteristic equation. If ch aci 

and sha ti are interchanged in (3.14), and it is considered that o,*,” > 0, we then obtain 

the characteristic equation for the problem of the formation of a neck in a plane sample 

under tension. 

Let us consider the internal instability under compression along the 0.r3-axis, i.e. for 
l _ 

51 = 0 and a: < 0. The concept of internal instability was apparently first introduced 
in [23], where this phenomenon was examined also for plane strain. Internal instability 

is understood to be the phenomenon when the solution of the hyperbolic equation appears. 
The appropriate value of the loading parameter at which the mentioned phenomenon is 
obtained, is called the critical value. From (2.18) and (2.19) we find that the critical 
value of the loading parameter is determined as the least root of the equation, 

G,, + o; J.12 = 0 (3.17) 

It must be noted that the quantities uz and o,‘; are negative in all the characteristic 

equations, with the exception of the cases when a neck is formed in plane and cylindrical 
samples under tension. 

All the results of this section have been obtained for an arbitrary form of the potential, 
and only now must the form of the elastic potential be made specific in order to obtain 

numerical results. 
The form of the characteristic equations is simplified considerably for thin-walled 

structures if expansions of special functions in the thin-walledness parameter are used. 
We hence obtain algebraic equations in place of transcendental ones. 

4. Blratfc potential formr. From (1.6) and the relationships proposed in 
p9, 241, a correspondence can be established between the quantities $I,,, $r, 9s and 
K*, G*, W* 119, 241; hence, the quantities ~if and Gij of (2.19) can be expressed in 
terms of K*, G* and o *and their derivatives. Therefore, in the presence of experimen- 
tally verified dependences of the quantities K*, G* and o * on the invariants of the 
strain tensor for a definite material, then numerical values of the critical parameters 
can be obtained from the characterisitic equations of the preceeding section. Taking 

account of the notation in 1191, let us express the values of the quantities &,, $i and & 
in terms of values of the quantities K*, G* and 0 * and the strain tensor invariants 
e, e0 and cp introduced in 1241 

%J 
$0 = x 

1/3 sin o* ___ _ [+ (e”)2 _ + $1) 
e0 cos 3cp 

(4.1) 
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(cont. ) 

Substituting the partial derivatives of the potential (4.1) into (~2.9)~ we obtain values 
of the quantities aij and Gii, expressed in terms of the quantities K*, G*, a*, e, et. 
‘p. It must be noted that e - 1 

1, eo2 = r/J2 - tlJ,” (4.2) 
The relationships (4.1) are simplified considerably if the deviators are similar, i. e. 

the phase of deviator similarity is o * = 0. RI this case we obtain from (4.1) 

Therefore,(4. I.)-(4.3) afford a possibility of obtaining numerical results from the 
characteristic equations of the preceding Section when the connection between the com- 

ponents of the generalized stress tensor and the finite strain tensor is given in the form 

of c24]. 
A detailed discussion of the elastic potential forms for incompressible rubberlike mate- 

rials can be found in @, ‘251, where recent results can be found in the latter. 

The elastic potential is selected in [3, 14, 9, lS, 16) in a form which outwardly agrees 
with the forrn of the elastic potential for small deformations. and naturally goes over 

into it for small deformations. No experimental verification of this kind of elastic poten- 
tial has been performed for any material in the mentioned papers, In the notation taken 
herein, this potential can be represented as 

ctt = $2 + ‘j2 II?, h, p - (Lame parameters} (4.4) 

A material with the potential in the form (4.4) is called “semilinear” in p4], and 

“harmonic” in [Q, 15. X6], in relation to the singularities in the solution of the boundary 
value problems for such a material, 

Let us write the values of some quantities obtained from the potential (4.4). From 
(1.6) and (4.4) we deduce 

From (2 9) and (4 4) we obT:ii “” ‘r = 2P1 *a = ’ 

(4.5) 

. . 
aij = h + 2&j, Gij = p (4.6) 

Therefore, the relationships (2. R) and (2.9) seem to agree with the relationships for 
small deformations of an isotropic body. 

For the three-dimensional problem we deduce fkom (2.3), (2.4) and (4.4) 

*o 
%l = f/2?@ -i_ ?w&2 + ?b2* - 3) + p(hP - I), 0;; = l/z h(hl2 + h22 -+ hs2 - 3) -t_ 

+ P @22 - I) 

*o 
%5 = '/2h(h12 + h22 + A32 - 3) -I- p(W - 1) (4.7) 

and in the rrx~ plane for the plane problem 
*o 

51 = '/2(hl" 4 b2 - 2)h + [&2- I), 0: = r/&r2 -/- h&-2)h + p(h2 - 1) (4.8) 

Note. The investigation of the characteristic equations of the preceding Section is 
simplified substantially in the case of the potential (4.4) since the quantities a+$ and Gij 
in (4.6) are independent of hi and the components of the subcritical state of stress are 
expressed simply in terms of hi in the relationships (4.7) and (4.8). These equations are 

almost the same as the corresponding equations of the theory of small subcritical defor- 
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mations. A number of results within the scope of the potential (4.4) has been obtained 
in [3, 14, 16, 91. 

6, Numsricol sxompls. Within the scope of the potential (4.4), let us inves- 
tigate the stability of a strip of thickness 2h and length 1 under compression along the 
oz3 -axis. Let us examine the case of plane strain in the z1z3 plane, and let us compare 

it with the solution of this same problem within the scope of the theory of small subcri- 

tical deformations p6]. In conformi~ with (4.3). we obtain for o:i = 0 

ha2 :- ZE-‘(I --- v’)o:3 -t 1, ?ii2 = -‘,v(l +- v) E*-’ oc; f i (5.1) 

Substituting (4.6), (:>. 1) into (3.14), we obtain the characteristic equation to determine 
*’ 

%a - ---p*. To accuracy of ul : (n/~/l)~ we obtain 

p*=ppo '--I-_vX' 
i 

17 +3v CL2 

1 

E a2 
PO= 1--- -vyf 3 (5.2) 

let p denote the intensity of the surface loading referred to the area of the body before 

deformation. According to f&14), (5.1) and (5.2) to the same accuracy 

t 

12 +8Y US’ 
PSPO 1--l--y 

) 

Neglecting deformations as compared with the angles of rotation [4], we obtain by the 

theory of small subcritical deformations [26] 

22 - 2v ci2 
P=Poj* - -jy-xj (5.4) 

Therefore, both by the theory of large subcritical deformations within the scope of the 

potential (4.4), and by the theory of small subcritical deformations, the value of the 

critical loading is less than ~0 but their magnitude is different. It must be noted that the 
magnitude of the critical loading depends essentially on the form of the elastic potential. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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